Experimental and Numerical Studies of Sheet Metal Forming with Damage Using Gas Detonation Process

نویسندگان

  • Sandeep P. Patil
  • Kaushik G. Prajapati
  • Vahid Jenkouk
  • Herbert Olivier
  • Bernd Markert
چکیده

Gas detonation forming is a high-speed forming method, which has the potential to form complex geometries, including sharp angles and undercuts, in a very short process time. Despite many efforts being made to develop detonation forming, many important aspects remain unclear and have not been studied experimentally, nor numerically in detail, e.g., the ability to produce sharp corners, the effect of peak load on deformation and damage location and its propagation in the workpiece. In the present work, DC04 steel cups were formed using gas detonation forming, and finite element method (FEM) simulations of the cup forming process were performed. The simulations on 3D computational models were carried out with explicit dynamic analysis using the Johnson–Cook material model. The results obtained in the simulations were in good agreement with the experimental observations, e.g., deformed shape and thickness distribution. Moreover, the proposed computational model was capable of predicting the damage initiation and evolution correctly, which was mainly due to the high-pressure magnitude or an initial offset of the workpiece in the experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Forming Parameters on the Single Point Incremental Forming of 1050 Aluminum Alloy Sheet

The single point incremental forming (SPIF) is one of the dieless forming processes which is widely used in the sheet metal forming. The correct selection of the SPIF parameters influences the formability and quality of the product. In the present study, the Gurson-Tvergaard Needleman (GTN) damage model was used for the fracture prediction in the numerical simulation of the SPIF process of alum...

متن کامل

Analytical Modeling of Axi-Symmetric Sheet Metal Forming

The cup drawing is a basic deep drawing process. Thus, understanding the mechanics ofthe cup drawing process helps in determining the general parameters that affect the deep drawingprocess. There are mainly two methods of analysis; experimental and analytical/numerical.Experimental analysis can be useful in analyzing the process to determine the process parameters thatproduce a defect free prod...

متن کامل

Numerical and Experimental Analysis and Optimization of Process Parameters of AA1050 Incremental Sheet Forming

The incremental sheet metal forming (ISMF) process is a new and flexible method that is well suited for small batch production or prototyping. This paper studies the use of the finite element method in the incremental forming process of AA1050 sheets to investigate the influence of tool diameter, vertical step size, and friction coefficient on forming force, spring-back, and thickness distribut...

متن کامل

EXPERIMENTAL AND NUMERICAL INVESTIGATION ON LASER BENDING PROCESS

Laser bending is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. In this paper, temperature distribution in a mild steel sheet metal is investigated numerically and experimentally. Laser heat source is applied through curved paths in square sheet metal parts. Finite element (FE) simulation is performed with the ABAQUS/CAE standard softwa...

متن کامل

Numerical and Experimental Investigation of Deep Drawing Process in Square Section of Single-Layer and Two-Layer Sheet

Deep drawing of two-layer sheet is a suitable way to achieve product with a desired shape and desired properties in sheet metal forming technology. Control of deep drawing parameter such as thinning is the most important challenge in this process. The most difficult part of this challenge is differences in material properties and geometry of each layer. In this paper, numerical approach has bee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017